Answer:
A. 52 min
.A. 47 watts
Explanation:
Given that;
jim weighs 75 kg
and he walks 3.3 mph; the objective here is to determine how long must he walk to expend 300 kcal.
Using the following relation to determine the amount of calories burned per minute while walking; we have:

here;
MET = energy cost of a physical activity for a period of time
Obtaining the data for walking with a speed of 3.3 mph From the standard chart for MET, At 3.3 mph; we have our desired value to be 4.3
However;
the calories burned in a minute = 
= 5.644
Therefore, for walking for 52 mins; Jim burns approximately 293.475 kcal which is nearest to 300 kcal.
4.
Given that:
mass m = 75 kg
intensity = 6 kcal/min
The eg ergometer work rate = ??
Applying the formula:

where ;



∴
Converting to watts;
Since; 6.118kg-m/min is = 1 watt
Then 291.66 kgm /min will be equal to 47.67 watts
≅ 47 watts
Answer: The correct option is (d)
lava flows built up from the ocean floor by multiple, summit and flank eruptions
Explanation:
Piles of baseltic lava flows built up from the ocean floor by multiple summit and flank eruptions describes seamounts and islands of the deep ocean basins.
Wow ! This question reads like it might have come from one of
Faraday or Maxwell's original laboratory notebooks.
Choice-A is the correct one, when you consider what "conductance"
means. Conductance is just 1/resistance .
So when you see
"A) Current is proportionate to the conductance of the circuit and
precisely proportional to the voltage applied across the circuit."
what it's saying is
"Current is inversely proportional to the resistance of the circuit, and
directly proportional to the voltage applied across the circuit."
If you write the equation for all those words, it looks like
I = V / R
and that's correct.
The correct option is out of the screen.
As the motion of positive charge is the direction of current in the wire. From the right-hand curl rule, the magnetic field direction will be outside the paper or the screen. As the <span>wire runs left to right and carries a current in the direction from left to right, the magnetic field lines will be outside the screen.</span>
It [the diamond] would act like a prism, and make a rainbow, or, the light would break up and disappear
Hope I helped!
~Mathlete12321