First speed = 20km/h
Time = 3 hours
Distance = 3×20
<h3> = <u>60 km</u></h3>
Second speed = 30km/h
Time = 4 hours
Distance = 4×30
<h3> = <u>120 km</u></h3>
Total distance = 60+120 = <u>180km</u>
Total time = 3+4 =<u> 7 hours</u>
Average speed = 180/7
<h3> = <u>25.71</u><u> </u><u>km</u><u>/</u><u>h</u></h3>
Hope this will help...
Answer: A combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Explanation:
The term standard temperature and pressure is also known as STP and it is most commonly used when we want to calculate the density of a gas.
The term standard temperature means
Fahrenheit or
or 273 Kelvin. On the other hand, term standard pressure means 1 atmosheric pressure of a gas.
Thus, we can conclude that a combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2
Answer:
0.2129 mm
Explanation:
We have given volume of the paint = 1 gallon
Area that covers the paint 
We have to find the thickness of the fresh paint
So
So the thickness of fresh paint on the wall is 0.2129 mm