Because of the greenhouse gases inside the greenhouse, and the gases trap the heat from the sun so the plant don't freeze, hope this helps
Acceleration is the
rate of change of velocity, a body moving with uniform velocity does not
possess acceleration at all i.e. acceleration is zero
Answer:
The force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Explanation:
F₂₁ = 
Where;
F₂₁ is the vector force on q₁ due to q₂
K is the coulomb's constant = 8.99 X 10⁹ Nm²/C²
r₂₁ is the unit vector
|r₂₁| is the magnitude of the unit vector
|q₁| is the absolute charge on point charge one
|q₂| is the absolute charge on point charge two
r₂₁ = [(9-5)i +(7.4-(-4))j] = (4i + 11.5j)
|r₂₁| = 
(|r₂₁|)² = 148.25

= 0.050938(0.19107i + 0.54933j) N
= (0.00973i + 0.02798j) N
Therefore, the force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
Answer:
All forms of energy are either kinetic or potential. The energy associated with motion is called kinetic energy . The energy associated with position is called potential energy . Potential energy is not "stored energy".
Explanation: