Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

The temperature of the lithosphere is around 300<span>°C</span> - 500<span>°<span>C</span></span>

Explanation:
The acceleration due to gravity g is defined as

and solving for R, we find that

We need the mass M of the planet first and we can do that by noting that the centripetal acceleration
experienced by the satellite is equal to the gravitational force
or

The orbital velocity <em>v</em> is the velocity of the satellite around the planet defined as

where <em>r</em><em> </em>is the radius of the satellite's orbit in meters and <em>T</em> is the period or the time it takes for the satellite to circle the planet in seconds. We can then rewrite Eqn(2) as

Solving for <em>M</em>, we get

Putting this expression back into Eqn(1), we get




And because of gravity it falls back down to the earth.
they are called "cells"
hope this is the answer is what your looking for.