Answer:

Explanation:
given,
weight of swimmer = 510 N
length of ledge, L = 1.75 m
vertical height of the cliff, h = 9 m
speed of the swimmer = ?
horizontal velocity of the swimmer should be that much it can cross the wedge.
distance = speed x time
d = v_x × t
1.75 = v_x × t ........(1)
now,time taken by the swimmer to cover 9 m
initial vertical velocity of the swimmer is zero.
using equation of motion for time calculation


t² = 1.938
t = 1.39 s
same time will be taken to cover horizontal distance.
now, from equation 1
1.75 = v_x × 1.39

horizontal speed of the swimmer is equal to 1.26 m/s
Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Answer:
It should be A. Disturbance that travels through a medium or space, transmitting energy from one point to another.
I hope this helped you :)