Answer:
Explanation:
In this case we shall calculate rate of change of flux in the coli to calculate induced emf .
Flux through the coil = no of turns x area x magnetic field perpendicular to it
=34 x 2.25 x (3.95 )²x 10⁻⁴ Weber
= 1193.4 x 10⁻⁴Weber
Final flux through the coil after turn by 90°
= 1193.4 x 10⁻⁴ cos 90 ° =0
Change of flux
= 1193.4 x 10⁻⁴ weber.
Time taken = 0.335 s .
Average emf= Rate of change of flux
= change in flux / time
=1193.4 x 10⁻⁴ / .335
= 3562.4 x 10⁻⁴
356.24 x 10⁻³
=356.24 mV.
Current induced = emf induced / resistance
= 356.24/.780
= 456.71 mA.
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s
Answer:
The speed of light measured in any frame is c = 3.00E8 m/s.
This is one of Einstein's postulates of special relativity.
Answer:
direction, speed
means the object is staying still, 0
newtons, N
the sum of all the forces acting on an object
Explanation:
Answer:
so i would say 11.4 i dont have work only this link
Explanation:
https://flexbooks.ck12.org/cbook/ck-12-physics-flexbook-2.0/section/11.4/primary/lesson/wave-speed-ms-ps