(Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.)
Answer:
Force that acted on the body was F = 13 N
Explanation:
If once accelerated, the body covers 60 meters in 6 seconds, then its velocity is 60/6 m/s = 10 m/s
When the force was acting (for 10 seconds) the object accelerated from rest (initial velocity vi = 0) to 10 m/s (its final velocity). therefore we can use the kinematic equation for the velocity in an accelerated motion given by:

which in our case becomes;

and we can solve for the acceleration as:
a = 10/10 m/s^2 = 1 m/s^2
Therefore the force acting on the body, based on Newton's 2nd Law expression: F = m * a is:
F = 13 kg * 1 m/s^2 = 13 N
Answer:
Yes
Explanation:
Newton's law of universal gravitation is usually stated that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses(m1 and m2) and inversely proportional to the square of the distance between their centers(r).
F = Gm1m2/r²
This is a general physical law derived from
empirical observations by what Isaac Newton called inductive reasoning.
when distance is doubled the gravitational force will be reduced by quarter not half.
C play all the songs on shuffle. entropy has to do with randomness