Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y
Explanation:
According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
(1)
Where;
is the Gravitational Constant
is the mass of the Earth
is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
So for satellite X, the orbital period
is:
(2)
Where 
(3)
(4)
For satellite Y, the orbital period
is:
(5)
Where 
(6)
(7)
This means 
Now let's calculate the tangential speed for both satellites:
<u>For Satellite X:</u>
(8)
(9)
<u>For Satellite Y:</u>
(10)
(11)
This means 
Therefore:
Satellite X has a greater period and a slower tangential speed than Satellite Y
Base from the pressure-flow hypothesis, the sieve tube in the phloem should be living cells because sugars are transported across the membranes by the active transport which needs ATP that is produced during respiration. Hope this helps.
Correct question is;
A ballet dancer spins with 2.4 rev/s with her arms outstretched,when the moment of inertia about axis of rotation is I. With her arms folded,the moment of inertia about the same axis becomes 0.6I about the same axis. Calculate the new rate of spin.
Answer:
4 rev/s
Explanation:
We are given;
Initial Angular velocity; ω_i = 2.4 rev/s
Initial moment of inertia; I_i = I
Final moment of inertia; I_f = 0.6I
From conservation of angular momentum, we have;
I_i × ω_i = I_f × ω_f
Where ω_f is the new rate of spin.
Thus, let's make it the subject to get;
ω_f = (I_i × ω_i/I_f)
Plugging in relevant values, we have;
ω_f = (I × 2.4/0.6I)
I will cancel out to give;
ω_f = 2.4/0.6
ω_f = 4 rev/s
Answer:
Explanation:
Look at the equation for Potential Energy. PE = mass times gravity times the height. Filling in and solving for h:
34.3 = .5(9.8)h so
34.3 = 4.9h so
h = 7 meters