The answer should be (D) endothermic reaction.
Reason : - Reactions in which energy is absorbed are called endothermic reactions. In your provided question, 150 kcal energy is being <u>absorbed</u>, and thus, we can say that it is an endothermic reaction.
Answer:
1.08 grams of nitrogen
Explanation:
Thermally ammonium perchlorate dissociate as shown in figure.
Thus as per equation two moles of ammonium perchlorate will give four moles of water, two moles of oxygen, one mole of chlorine and one mole of nitrogen,
The molar mass of ammonium perchlorate = 117.5g/mol
Two moles of ammonium perchlorate = 2X 117.5 = 234 g
The molar mass of nitrogen = 28g
thus 234 grams of ammonium perchlorate will give 28 grams of nitrogen
Hence 9 grams of ammonium perchlorate will give 1.08 grams of nitrogen
Leftover: approximately 11.73 g of sulfuric acid.
<h3>Explanation</h3>
Which reactant is <em>in excess</em>?
The theoretical yield of water from Al(OH)₃ is lower than that from H₂SO₄. As a result,
- Al(OH)₃ is the limiting reactant.
- H₂SO₄ is in excess.
How many <em>moles</em> of H₂SO₄ is consumed?
Balanced equation:
2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 H₂O
Each mole of Al(OH)₃ corresponds to 3/2 moles of H₂SO4. The formula mass of Al(OH)₃ is 78.003 g/mol. There are 15 / 78.003 = 0.19230 moles of Al(OH)₃ in the five grams of Al(OH)₃ available. Al(OH)₃ is in excess, meaning that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
How many <em>grams</em> of H₂SO₄ is consumed?
The molar mass of H₂SO₄ is 98.076 g.mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.076 = 28.289 g.
How many <em>grams</em> of H₂SO₄ is in excess?
40 grams of sulfuric acid H₂SO₄ is available. 28.289 grams is consumed. The remaining 40 - 28.289 = 11.711 g is in excess. That's closest to the first option: 11.73 g of sulfuric acid.