Answer:
a ) 
b) 
Explanation:
given data:
pressure ration rp = 12
inlet temperature = 300 K
TURBINE inlet temperature = 1000 K
AT the end of isentropic process (compression) temperature is



AT the end of isentropic process (expansion) temperature is



isentropic work is given as

w = 1.005(610.18 - 300)
w = 311.73 kJ/kg
w(turbine) = 1.005( 1000 - 491.66)
w(turbine) = 510.88 kJ/kg
a) mass flow rate for isentropic process is given as


b) actual mass flow rate uis given as


Answer:
Force the floor exerts on the passenger is 833 N.
Explanation:
- Weight of passenger (
) = mg = 85 × 9.8 N = 833 N
- Force the floor exerts on the passenger (
) = ?
- For the elevator with the speed as 2.0 m/s the net force is zero, it means that the force is balanced.
i.e.
= -
= -mg = 833 N
hence
is 833 N
- If the lift was not at a constant speed i.e. if it had acceleration (
) then the case would be different.
Cations are positively charged ions. And for positive charged ions, it means the positive charges, protons, are more than the negative charges, the electrons.
Therefore Cations have fewer electrons than protons.
So the answer is: c. electrons; protons.
Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
It has to be one continuous column of cloud (air) connected to the ground and in constant rotation.