Answer:
a) The module's acceleration in a vertical takeoff from the Moon will be 
b) Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Explanation:
a) During a vertical takeoff, the sum of the forces in the vertical axis will be equal to mass times the module's acceleration. In this this case, the thrust of the module's engines and the total module's weight are the only vertical forces. (In the Moon, the module's weight will be equal to its mass times the Moon's gravity acceleration)

Where:
thrust 
module's mass 
moon's gravity acceleration 
module's acceleration during takeoff
Then, we can find the acceleration like this:


The module's acceleration in a vertical takeoff from the Moon will be 
b) To takeoff, the module's engines must generate a thrust bigger than the module's weight, which will be its mass times the Earth's gravity acceleration.

Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
It’s b because if you’re running at 5 miles per second being a 100kg weight is the fastest
Answer:
Maximum force will be equal to 720 N
Explanation:
We have given that spring constant 
Maximum stretch of the spring x = 6 cm = 0.06 m
We have to find the maximum force on the spring
We know that spring force is given by

So the maximum force which is necessary to relaxed the spring will be eqaul to 720 N
You would end up with a brown/black color depending on how much of each pigment was added! Hope this helps.
Perilymph of scala vestibule; endolymph of cochlear duct; perilymph of scala tympani