Answer:
False
Explanation:
Atomic mass (Also called Atomic Weight, although this denomination is incorrect, since the mass is property of the body and the weight depends on the gravity) Mass of an atom corresponding to a certain chemical element). The uma (u) is usually used as a unit of measure. Where u.m.a are acronyms that mean "unit of atomic mass". This unit is also usually called Dalton (Da) in honor of the English chemist John Dalton.
It is equivalent to one twelfth of the mass of the nucleus of the most abundant isotope of carbon, carbon-12. It corresponds roughly to the mass of a proton (or a hydrogen atom). It is abbreviated as "uma", although it can also be found by its English acronym "amu" (Atomic Mass Unit). However, the recommended symbol is simply "u".
<u>
The atomic masses of the chemical elements are usually calculated with the weighted average of the masses of the different isotopes of each element taking into account the relative abundance of each of them</u>, which explains the non-correspondence between the atomic mass in umas, of an element, and the number of nucleons that harbors the nucleus of its most common isotope.
Your answer is cumulonimbus clouds
The part that causes the disc caliper piston to retract when the brakes are released is the square-cut O-ring.
The square cut seal is the most important part of a disc brake caliper, for keeping the brake behind the piston so that when you step on the brake pedal, it releases a pressure that applied to the piston which in return applies the pad to the rotor.
The formula for this problem that we will be using is:
F * cos α = m * g * μs where:F = 800m = 87g = 9.8
cos α = m*g*μs/F= 87*9.8*0.55/800= 0.59 So solving the alpha, find the arccos above.
α = arccos 0.59 = 54 ° is the largest value of alpha
Answer:
The semi truck travels at an initial speed of 69.545 meters per second downwards.
Explanation:
In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)
(1)
Where:
,
- Masses of the semi truck and the car, measured in kilograms.
,
- Initial velocities of the semi truck and the car, measured in meters per second.
- Final speed of the system after collision, measured in meters per second.
If we know that
,
,
and
, then the initial velocity of the semi truck is:





The semi truck travels at an initial speed of 69.545 meters per second downwards.