Answer:
μ =tanθ
Explanation:=
The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.
μ=tanθ
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
Answer:
The observed wavelength on Earth from that hydrogen atom is
.
Explanation:
Given that,
The actual wavelength of the hydrogen atom, 
A hydrogen atom in a galaxy moving with a speed of, 
We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

is the observed wavelength

So, the observed wavelength on Earth from that hydrogen atom is
. Hence, this is the required solution.
Answer:
15.3 s and 332 m
Explanation:
With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon
gm = 1/6 ge
gm = 1/6 9.8 m/s² = 1.63 m/s²
We calculate the range
R = Vo² sin 2θ / g
R = 25² sin (2 30) / 1.63
R= 332 m
We will calculate the time of flight,
Y = Voy t – ½ g t2
Voy = Vo sin θ
When the ball reaches the end point has the same initial height Y=0
0 = Vo sin t – ½ g t2
0 = 25 sin (30) t – ½ 1.63 t2
0= 12.5 t – 0.815 t2
We solve the equation
0= t ( 12.5 -0.815 t)
t=0 s
t= 15.3 s
The value of zero corresponds to the departure point and the flight time is 15.3 s
Let's calculate the reach on earth
R2 = 25² sin (2 30) / 9.8
R2 = 55.2 m
R/R2 = 332/55.2
R/R2 = 6
Therefore the ball travels a distance six times greater on the moon than on Earth
Answer:
Solenoid's inductance is 1.11 × 10^-8H
The average emf around the solenoid is 1.3 × 10^-5V
Explanation: Please see the attachments below