Answer:


Explanation:
r = Radius = 2.7 cm
F = Force = 
A = Area = 
= Stress = 
E = Young's modulus = 
= Strain
= Original length = 67 cm
= Change in length
Young's modulus is given by

Strain is 
Strain is given by

The cylinder height decreases by 
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.

As per as my knowledge
The speed of a wave in a medium is affected by <u>d</u><u>e</u><u>n</u><u>s</u><u>i</u><u>t</u><u>y</u>,<u> </u><u>w</u><u>a</u><u>v</u><u>e</u><u>l</u><u>e</u><u>n</u><u>g</u><u>t</u><u>h</u> and <u>t</u><u>e</u><u>m</u><u>p</u><u>e</u><u>r</u><u>a</u><u>t</u><u>u</u><u>r</u><u>e</u><u> </u>:)
(Good luck on your test and mark me brainliest if this helps)
Answer:
a) v_average = 11 m / s, b) t = 0.0627 s
, c) F = 7.37 10⁵ N
, d) F / W = 35.8
Explanation:
a) truck speed can be found with kinematics
v² = v₀² - 2 a x
The fine speed zeroes them
a = v₀² / 2x
a = 22²/2 0.69
a = 350.72 m / s²
The average speed is
v_average = (v + v₀) / 2
v_average = (22 + 0) / 2
v_average = 11 m / s
b) The average time
v = v₀ - a t
t = v₀ / a
t = 22 / 350.72
t = 0.0627 s
c) The force can be found with Newton's second law
F = m a
F = 2100 350.72
F = 7.37 10⁵ N
.d) the ratio of this force to weight
F / W = 7.37 10⁵ / (2100 9.8)
F / W = 35.8
.e) Several approaches will be made:
- the resistance of air and tires is neglected
- It is despised that the force is not constant in time
- Depreciation of materials deformation during the crash