Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:
a) The mechanical force is -226.2 N
b) Using the coenergy the mechanical force is -226.2 N
Explanation:
a) Energy of the system:



If i = 2A and g = 10 cm


b) Using the coenergy of the system:

Answer:
a) Under damped
Explanation:
Given that system is critically damped .And we have to find out the condition when gain is increased.
As we know that damping ratio given as follows

Where C is the damping coefficient and Cc is the critical damping coefficient.

So from above we can say that


From above relationship we can say when gain (K) is increases then system will become under damped system.
Answer:
7.8 Mph
Explanation:
Rate of cycling = 1.1 rev/s
Rear wheel diameter = 26 inches
Diameter of sprocket on pedal = 6 inches
Diameter of sprocket on rear wheel = 4 inches
Circumference of rear wheel = \pi d=26\piπd=26π
Speed would be
\begin{gathered}\text{Rate of cycling}\times \frac{\text{Diameter of sprocket on pedal}}{\text{Diameter of sprocket on rear wheel}}\times{\text{Circumference of rear wheel}}\\ =1.1\times \frac{6}{4}\times 26\pi\\ =134.77432\ inches/s\end{gathered}Rate of cycling×Diameter of sprocket on rear wheelDiameter of sprocket on pedal×Circumference of rear wheel=1.1×46×26π=134.77432 inches/s
Converting to mph
1\ inch/s=\frac{1}{63360}\times 3600\ mph1 inch/s=633601×3600 mph
134.77432\ inches/s=134.77432\times \frac{1}{63360}\times 3600\ mph=7.65763\ mph134.77432 inches/s=134.77432×633601×3600 mph=7.65763 mph
The Speed of the bicycle is 7.8 mph
Answer: The complete part of the question is to find the exit velocity
Explanation:
Given the following parameters
Inlet pressure = 700kpa
outlet pressure = 40kpa
Temperature = 80°C = 353k
mass flow rate = 1 kg/s
The application of the continuity and the bernoulli's equation is employed to solve the problem.
The detailed steps and the appropriate formula is as shown in the attached file.