Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R
The evidence that the universe is expanding comes with something called the red shift<span> of light. Light travels to Earth from other galaxies. As the light from that galaxy gets closer to Earth, the distance between Earth and the galaxy increases, which causes the wavelength of that light to get longer.</span>
Answer:
z = 3,737 10⁵ m
Explanation:
a) As they indicate that the atmosphere behaves like an ideal gas, we can use the equation
P V = n R T
P = (n r / V) T
We replace
P = (n R / V) T₀
b) Let's apply this equation in the points
Lower
.z = 0
P₀ = 610 Pa
P₀ = (nR / V) T₀
Higher.
P = 10 Pa
P = (n R / V) T₀ e^{- C z}
We replace
P = P₀ e^{- C z}
e^{- C z} = P / P₀
C z = ln P₀ / P
z = 1 / C ln P₀ / P
Let's calculate
z = 1 / 1.1 10⁻⁵ ln (610/10)
z = 3,737 10⁵ m