Unit of M is also mole/L, where mole is the moles of solute and L is the volume of the solution. The latter is given: 158 mL or 0.158 L. So we need to find out the moles of NH4Br.
Moles of NH4Br = Mass of NH4Br/molar mass of NH4Br = 17.0g/(14+1*4+79.9)g/mol = 0.1736 mole.
So, the molarity of the solution = 0.1736mole/0.158L = 1.10 mole/L = 1.10 M
Answer:
They are in this position
<h2><em>1. A</em></h2><h2><em>3. B</em></h2><h2><em>4. C</em></h2><h2><em>7. E</em></h2><h2><em>5. F</em></h2>
Thank you for the free 15 points .
Answer :
(1) pH = 1.27
(2) pH = 13.35
(3) The given solution is not a buffer.
Explanation :
<u>(1) 53.1 mM HCl</u>
Concentration of HCl = 
As HCl is a strong acid. So, it dissociates completely to give hydrogen ion and chloride ion.
So, Concentration of hydrogen ion= 
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


<u>(2) 0.223 M KOH</u>
Concentration of KOH = 0.223 M
As KOH is a strong base. So, it dissociates completely to give hydroxide ion and potassium ion.
So, Concentration of hydroxide ion= 0.223 M
Now we have to calculate the pOH.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)


Now we have to calculate the pH.

<u>(3) 53.1 mM HCl + 0.223 M KOH</u>
Buffer : It is defined as a solution that maintain the pH of the solution by adding the small amount of acid or a base.
It is not a buffer because HCl is a strong acid and KOH is a strong base. Both dissociates completely.
As we know that the pH of strong acid and strong base solution is always 7.
So, the given solution is not a buffer.