The characteristic being calculated here is the mean or the average of the data set.
To check:
(20.73 + 20.76 + 20.68 + 20.75)/4 [we divide it by 4 because there are 4 numbers]
= 82.92 / 4
= 20.73
Answer:
uh yeah I think so technically
Answer:
-125.4
Explanation:
Target equation is 4C(s) + 5H2(g) = C4H10
These are the data equations for enthalpy of combustion
- C(s) + O2(g) =O2(g) -393.5 kJ/mol * 4
- H2(g) + ½O2(g) =H20(l) = 285.8 kJ/mol * 5
- 2CO2(g) + 3H2O(l) = 13/2O2 (g) + C4H10 - 2877.1 reverse
To get target equation multiply data equation 1 by 4; multiply equation 2 by 5; and reverse equation 3, so...
Calculate 4(-393.5) + 5(-285.8) + 2877.6 and you should get the answer.
I believe that the answer is 1.8^24 of Ni atoms in 3.6 mol of Ni.
Hope this helps. :)
Answer:
The amount in grams of hydrogen gas produced is 0.551 grams
Explanation:
The parameters given are;
Number of atoms of potassium, aₙ = 3.289 × 10²³ atoms
Chemical equation for the reaction is given as follows;
2K + 2H₂O
KOH + H₂
Avogadro's number,
, regarding the number of molecules or atom per mole is given s follows;
= 6.02 × 10²³ atoms/mole
Therefore;
The number of moles of potassium present = 3.289 × 10²³/(6.02 × 10²³) = 0.546 moles
2 moles of potassium produces one mole of hydrogen gas, therefore;
1 moles of potassium produces 1/2 mole of hydrogen gas, and 0.546 moles of potassium will produce 0.546/2 moles of hydrogen which is 0.273 moles of hydrogen gas
The molar mass of hydrogen gas = 2.016 grams
Therefore, 0.273 moles will have a mass of 0.273×2.016 = 0.551 grams.
The amount in grams of hydrogen gas produced = 0.551 grams.