Answer:
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Some mass is turned into energy, according to E=mc2.
<em><u>Explanation:</u></em>
E=mc2 is probably the most famous equation. E is the energy, m is mass, and c is the constant speed of light. Einstein came up with it to show that energy and mass are proportional - one can turn into the other, and back again.
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Answer:
The highly unstable pure sodium or potassium wants to lose an electron and this splits the water atom, producing a negatively charged hydroxide ion and hydrogen and forming an explosive gas that ignites.
Explanation:
Answer:
Contains DNA, Contains Ribosomes, Lacks a nucleus
Explanation:
<span> Ag(NH3)2Cl + 3HNO3 = AgNO3 +2NH4NO3 + HCl </span>
<span>or
Ag(NH3)2Cl + HNO3 = Ag(NH3)2NO3 + HCl this the complete balanced equation
now remove spectator ions to get net ionic equation
so
</span>
<span>
2H+ + 2NO3- + [Ag(NH3)2]+ Cl- -> AgCl + 2NH4+ + 2NO3- 2NO3- 2H+ [Ag(NH3)2]+ + Cl- -> AgCl + 2NH4+
</span>hope it helps