Answer:
A) (3.2g)
Explanation:
Did you reposed this? Because I remember answering this
Answer:
3 salad = 3 lettuce + 6 tomatoes + 9 three carrots
Coefficients: 3, 6, 9
Explanation:
1 salad = 1 lettuce + 2 tomatoes + 3 three carrots
<em>Multiply all the coefficients of 1 salad by 3:</em>
3(1 salad) = 3(1 lettuce + 2 tomatoes + 3 three carrots)
<em>Expand the equation:</em>
3 salad = 3 lettuce + 6 tomatoes + 9 three carrots
Answer:

Explanation:
Hello!
In this case, since the density is computed by dividing the mass of the substance by its occupied volume (d=m/V), we first need to realize that 0.8206 g/mL is the same to 0.8206 kg/L, which means we first need to compute the volume in L:

Then, solving for the mass in d=m/V, we get m=d*V and therefore the mass of gasoline in that full tank turns out:

Best regards!
Answer:
1. The product has a higher Rf value on a silica gel TLC plate because it is more polar than the starting methyl benzoate.
2. False
3. True
Explanation:
In chromatography, there is a stationary phase and a mobile phase. The ratio of the distance moved by a component and the distance moved by the solvent gives the retention factor (Rf).
Since silica gel is a polar solvent, it will retain the more polar product methyl m-nitrobenzoate compared to the methyl benzoate starting material.
In comparing the electrophillic aromatic substitution of m-nitrobenzoate and methyl benzoate, we must remember that the presence of electron withdrawing groups (such as -NO2 and -CHO) on the aromatic compound deactivates the compound towards electrophillic aromatic substitution hence, methyl m-nitrobenzoate is less reactive than methyl benzoate in Electrophilic Aromatic Substition and Methyl benzoate is less reactive than benzene in Electrophilic Aromatic Substition
Answer:
Identify one disadvantage to each of the following models of electron configuration:
Dot structures
Arrow and line diagrams
Written electron configurations
Explanation:
Identify one disadvantage to each of the following models of electron configuration:
Dot structures
Arrow and line diagrams
Written electron configurations