Answer:
5.619×10⁶ N
Explanation:
Applying,
F = kqq'/r²................... Equation 1
Where F = electrostatic force between the charges, k = coulomb's constant, q = first charge, q' = second charge, r = distance btween the charges
From the questiion,
Given: q = 2.5 C, q' = 2.5 C, r = 100 m
Constant: 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.5×2.5×8.99×10⁹)/100²
F = 56.19×10⁵
F = 5.619×10⁶ N
Answer:
835.29 Hz
Explanation:
When moving towards the source of sound, frequency will be given by
f*=f(vd+v)/v
Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.
Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then
f*=800(15+340)/340=835.29411764704 Hz
Rounded off, the frequency is approximately 835.29 Hz
Answer:
The duration of the movie is longer than 2 hrs.
Explanation:
Given:
The duration of the movie observed by the crew on the spacecraft is 2 hrs.
According to time-dilation formula:

Here,
is the required time,
is the original time,
is the velocity of the spacecraft and
is the velocity of light.
Since
, so
.
So the time required will be large.
Answer:
The jet will fly 2400 km.
Explanation:
Given the velocity of the jet flying toward the east is 1,500 kmph toward the east.
We need to find the distance covered in 1.6 hours.
In our problem we are given speed and time, we can easily determine the distance using the following formula.


So, the supersonic jet will travel 2400 km in 1.6 hours toward the east from its starting point.
Answer:
The equipment to use is: a beaker, a fixed amount of water, a thermometer.
The mass of water, the time, the temperature for each time should be noted and a graph of Temperature versus time should be made
Explanation:
The design of an experiment is to place the beaker in the microwave, with a good amount of water (approximately ⅔ of its capacity) and turn it on for small periods of time, generally the minimum is 30 s, quickly open the microwave, place a thermometer or better yet an infrared thermometer to measure the temperature of the water; repeat this several times.
The advantage of the infrared thermometer is that it reduces the transfer of heat between the water and the thermometer.
The mass of water, the time, the temperature for each time should be noted and a graph of Temperature versus time should be made.
The equipment to use is: a beaker, a fixed amount of water, a thermometer.
The main precaution that must be taken is not to open the microwave while it is on.