There are at least two forces on it, and there could be more.
Vertical forces:
-- gravity, directed downward
-- buoyant force, directed upward
These two forces must be exactly equal, so that the net
vertical force on the raft is zero. Otherwise, it would be
accelerating either up or down.
Horizontal forces:
We know that the net horizontal force on the raft is zero.
Otherwise, it would be accelerating horizontally.
But we don't know if there are actually no horizontal forces
at all, or a balanced group of horizontal forces, that add up
to a net force of zero.
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,
Where,
c = Speed of light (vacuum)
f = frequency
Our values are,
Replacing we have,
<em>Therefore the wavelength of this wave is </em>
Vf = 0 + 3.5•8.7
= 30.45 m/s
Answer:
Acceleration
Explanation:
can you mark me brainlies
So, if an object travels in a curved path, it changes velocity, and, thus, accelerates. This acceleration must be tied to a force. ... Therefore, whenever an object travels in a curved path, there must be an unbalanced force acting upon it. It is important to understand that all this may occur without a change in speed.t
Acceleration = (change in speed) / (time for the change) = 9/3 = <em>3 m/s²</em> .
His mass makes no difference.