The universe has trillions of galaxies and counting. Astronomers give names to each galaxy base on its shape (e.i, Sombrero galaxy, Milkyway Galazy, ect,.).
Also, the size of the galaxy is taken into account and their color.
"Gamma rays" is the name that we call the shortest of all electromagnetic waves. They're shorter than radio waves, microwaves, infrared waves, heat waves, visible light waves, ultraviolet waves, and X-rays. They extend all the way down to waves that are as short as the distance across an atom.
Being so short, they carry lots of energy. They can penetrate many materials, and they can damage living cells and DNA. They're dangerous.
The sun puts out a lot of gamma radiation. The atmosphere (air) filters out a lot of it, otherwise there couldn't even be any life on Earth.
As soon as astronauts fly out of the atmosphere, they need a lot of shielding from gamma rays.
You know the precautions we take when we're around X-rays. The same precautions apply around gamma rays, only a lot more so.
It's only in the past several years that we've learned how to MAKE gamma rays without blowing things up. Also, how to control them, and how to use them for medical and industrial applications.
The correct answer for the question that is being presented above is this one: "c. transition state stage." During the transition state stage, the reaction of the atoms have the highest energy. It is also <span>during the formation of the activated complex in the middle of the experiment.</span>
Let's assume that Zoey ran at a constant speed. we can use the equation,
d = st
where, d = distance, s = speed, and t = time taken.
By rearranging,
s = d/t
Zoey had travelled 100 m in 20 seconds.
Hence, s = 100 m / 20 s = 5 m/s
therefore Zoey's speed at 100 m is 5 m/s
Answer:
Kinetic Energy
Explanation:
Heat energy is another name for thermal energy. Kinetic energy is the energy of a moving object. As thermal energy comes from moving particles, it is a form of kinetic energy.