The answer is GAS. In a gas, the particles are in a completely random motion in any direction. And it is not solid. Hope I helped. Good luck
Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>
Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Answer:
b) the alpha particles were found to be attracted to the nucleus
Explanation:
Answer:
t = 2.01 s
Vf = 19.7 m/s
Explanation:
It's know through the International System that the earth's gravity is 9.8 m/s², then we have;
Data:
- Height (h) = 20 m
- Gravity (g) = 9.8 m/s²
- Time (t) = ?
- Final Velocity (Vf) = ?
==================================================================
Time
Use formula:
Replace:
Everything inside the root is solved first. So, we solve the multiplication of the numerator:
It divides:
The square root is performed:
==================================================================
Final Velocity
use formula:
Replace:
Multiply:
==================================================================
How long does it take to reach the ground?
Takes time to reach the ground in <u>2.01 seconds.</u>
How fast does it hit the ground?
Hits the ground with a speed of <u>19.7 meters per seconds.</u>