1) First of all, we need to find the distance between the two charges. Their distance on the xy plane is

substituting the coordinates of the two charges, we get

2) Then, we can calculate the electrostatic force between the two charges

and

, which is given by

where

is the Coulomb's constant.
Substituting numbers, we get

and the negative sign means the force between the two charges is attractive, because the two charges have opposite sign.
Answer:
1- C 2-B 3-B - these are ur best answers
Explanation:
It's about 6 minutes, as I seem to recall. Sort of the time for the earth to go into shadow darkness when there's an eclipse ???
As per energy conservation in the reversible engine we can say

here we know that


now from above equation


now we can convert it into kW


so above is the power input to the refrigerator
now to find COP we know that


so COP of refrigerator is 2.2
Answer:
The speed will be "1.06 m/s".
Explanation:
The given values are:
Momentum,
m1 = 244 g
m2 = 45.2 g
On applying momentum conservation
,
Let v2 become the final golf's speed.
From Momentum Conservation
⇒ 
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 