1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
3 years ago
11

To embed a video using a plug-in, point to _______________ on the Insert menu and click Plugin.

Engineering
1 answer:
babunello [35]3 years ago
8 0

Answer:

d

Explanation:

You might be interested in
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
4 years ago
The principal value of a Pareto diagram is as a
vlada-n [284]

The Pareto principle is that most things in our life are not commonly distributed.

<u>Explanation:</u>

Pareto chart shows that most of the things which we have in our life and the resources in our life are not equally distributed. The ratio is not always 50:50 according to this principle.

The most important use of a Pareto diagram is to show the most important factor among the set of factors that have been shown. Along with that it also shows the sources which lead to the common defects in the system and tries to solve those defects which occur most often.

4 0
4 years ago
A long rod of 60-mm diameter and thermophysical properties rho= 8000 kg/m3, c= 500 J/kg·K, and k= 50 W/m·K is initially at a uni
Dvinal [7]

Answer:

Tc =    = 424.85 K

Explanation:

Data given:

D = 60 mm = 0.06 m

\rho = 8000 kg/m^3

k = 50 w/m . k

c = 500 j/kg.k

h_{\infty} = 1000 w/m^2

t_{\infity} = 750 k

t_w = 500 K

surface area = As = \pi dL

\frac{As}{L} = \pi D = \pi \timeS 0.06

HEAT FLOW Q  is

Q = h_{\infty} As (T_[\infty} - Tw)

 = 1000 \pi\times 0.06 (750-500)

  = 47123.88 w per unit length of rod

volumetric heat rate

q = \frac{Q}{LAs}

  = \frac{47123.88}{\frac{\pi}{4} D^2 \times 1}

q = 1.66\times 10^{7} w/m^3

Tc = \frac{- qR^2}{4K} + Tw

= \frac{ - 1.67\times 10^7 \times (\frac{0.06}{2})^2}{4\times 56} +  500

   = 424.85 K

7 0
4 years ago
Nowadays power supply on board ship is determine low and high voltage. From what range low &amp; high voltage is being determine
zlopas [31]

Any Voltage used on board a ship if less than 1kV (1000 V) then it is called as LV (Low Voltage) system and any voltage above 1kV is termed as High Voltage. Typical Marine HV systems operate usually at 3.3kV or 6.6kV.

Explanation:

trust

6 0
2 years ago
A 1 250 kg car moving at a velocity of 30 km/hr along EDSA is accelerated by a force of 1 700 N. What will be its velocity after
Talja [164]
<h3><u>The velocity of the car after 10 s is 78.95 km/hr</u></h3>

Explanation:

<h2>Given:</h2>

m = 1,250 kg

v_i = 30 km/hr

F = 1,700 N

t = 10 s

<h2>Required:</h2>

Final velocity

<h2>Equation:</h2><h3>Force</h3>

F = ma

where: F - force

m - mass

a - acceleration

<h3>Acceleration</h3>

a = \frac{v_f \:-\:v_i}{t}

where: a - acceleration

v_i - initial velocity

v_f - final velocity

t - time elapsed

<h2>Solution:</h2><h3>Solve for acceleration using the formula for force</h3>

F = ma

Substitute the value of F and m

(1700 N) = (1250 kg)(a)

a = \frac{1700\:N}{1250\:N}

a = 1.36 m/s²

<h3>Solve for final velocity using the formula for acceleration</h3>
  • Convert 30 km/hr to m/s

= \frac{30\:km}{hr}\:×\:\frac{1000\:m}{1\:m}\:×\:\frac{1\:hr}{3600\:s}

= 8.33 m/s

  • Substitute the value of a, v_i and t

a = \frac{v_f \:-\:v_i}{t}

1.36\: m/s² \:= \:\frac{v_f \:-\:8.33\:m/s}{10\:s}

(10 \:s)1.36\: m/s² \:= \:v_f \:-\:8.33\:m/s

v_f\: =\: (10 \:s)1.36 \:m/s²\: + \:8.33\:m/s

v_f \: =\: 13.6 \:m/s \:+\: 8.33\:m/s

v_f\: =\:  21.93\: m/s

  • Convert to km/hr

= \frac{21.93\:m}{s}\:×\:\frac{1\:km}{1000\:m}\:×\:\frac{3600\:s}{1/:hr}

= 78.95\: km/hr

<h2>Final answer</h2><h3><u>The velocity of the car after 10 s is 78.95 km/hr</u></h3>
6 0
3 years ago
Other questions:
  • Write a modular program that finds the equation, area, and circumference of a circle, given the coordinates of the center of the
    11·1 answer
  • 50.38
    14·1 answer
  • Inspection with considering a variable uses gages to determine if the product is good or bad. True or False?
    15·2 answers
  • What is future active and future passive and future perfect active
    9·1 answer
  • Do you understand entropy? Why the concept of entropy is difficult to engineering students?
    11·1 answer
  • 0.9 lbm of water fills a container whose volume is 1.9 ft3. The pressure in the container is 100 psia. Calculate the total inter
    9·1 answer
  • At the instant shown car A is travelling with a velocity of 24 m/s and which is decreasing at 4 m/s2 along the highway. At the s
    14·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • 2.
    7·1 answer
  • Hello how are you all bye everyone have a great day ahead​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!