Answer:
4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Explanation:
we have given 4140 steel contains 0.4% C
we know here that 4140 steel is low steel alloy , and it have low amount of chromium , manganese etc alloying element
and these elements which are present in 4140 steel they increase yield strength and ultimate strength of steel
while in 1045 steel contains 0.45 % c is plain carbon steel
and it do not contain any alloying element
so that 4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Answer:
attached below
Explanation:
a) G(s) = 1 / s( s+2)(s + 4 )
Bode asymptotic magnitude and asymptotic phase plots
attached below
b) G(s) = (s+5)/(s+2)(s+4)
phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4
attached below
c) G(s)= (s+3)(s+5)/s(s+2)(s+4)
solution attached below
Answer:
U just believe in yourself ..........
Explanation:
<em>If </em><em>there </em><em>a</em><em>r</em><em>e </em><em>more </em><em>electrons </em><em>than </em><em>protons </em><em>in </em><em>a </em><em>piece </em><em>of </em><em>matter </em><em>it </em><em>will </em><em>have </em><em>a </em><em>negative</em><em> </em><em>charge </em><em>.</em><em> </em><em>i</em><em>f</em><em> </em><em>there </em><em>are </em><em>fever </em><em>it </em><em>will </em><em>have </em><em>positive</em><em> </em><em>charge </em><em>and </em><em>if </em><em>there </em><em>are </em><em>e</em><em>qual </em><em>numbers </em><em>it </em><em>will </em><em>have </em><em>neutral</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
.
.
.
.
.
.
.
.
hope it was helpful to you.....
Answer:
Answer for the question :
"the two boxcars A and B have a weight of 20 000 Ib and 30 000 Ib, respectively. If they coast freely down the incline when the brakes are applied to all the wheels of car A causing it to skid, determine the force in the coupling C between the two cars. The coefficient of kinetic friction between the wheels of A and the tracks is μk=0.5. The wheels of car B are free to roll. Neglect their mass in calculation."
is explained in the attachment.
Explanation: