A. Because metal is a good conductor of heat.
If a frying pan wasn't a good conductor of heat it's purpose of cooking things wouldn't really be resolved. Without heat it couldn't cook well. I think lol that's my way of thinking.
Hope I helped :)
30000 btuh /3413 btuh/kw. = 8.8 kw
8.8 kw/.746 kw/hp = 11.8 hp if COP is 1
11.8/3 hp (COP coefficient of performance) = 3.99 COP
>>>So yes a 3.0 hp compressor with a nominal COP of 4 will handle the 30,000 btuh load.
3.2 to 4.5 is expected COP range for an air cooled heat pump or a/c unit.
The value of the second charge is 1.2 nC.
<h3>
Electric potential</h3>
The work done in moving the charge from infinity to the given position is calculated as follows;
W = Eq₂
E = W/q₂
<h3>Magnitude of second charge</h3>
The magnitude of the second charge is determined by applying Coulomb's law.

Thus, the value of the second charge is 1.2 nC.
Learn more about electric potential here: brainly.com/question/14306881
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.
The power of the lamp would be calculated with the equation of ohm laws. P = U x I = 122V x 0.1A = 12.2W