1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
3 years ago
14

Question 2/5

Engineering
1 answer:
adelina 88 [10]3 years ago
7 0
All of the above. Answer.
You might be interested in
An induced-draft cooling tower cools 90,000 gallons per minute of water from 84 to 68oF. Air at 14.61 psia, 70oF dry bulb and 60
belka [17]

Answer:

a. V = 109.64 × 10⁵ ft/min

b. Mw = 654519.54 kg/hr

Explanation:

Given Parameters

mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s

inlet temperature of water, T1 = 84 F = 28.89 C

outlet temperature of water, T2 = 68 F = 20 C

specific heat capacity of water, c = 4.18kJ/kgK

rate of heat remover from water, Qw is given by

Qw = 6607.33[28.89 - 20] * 4.18

Qw = 245529.545kw

For air, inlet condition

DBT = 70 F              hi = 43.43 kJ/kg

WBT = 60 F             wi = 0.00874 kJ/kg

                                u1 = 0.8445 m/kg

oulet condition,

DBT = 70 F        RH = 100.1

h1 = 83.504kJ/kg

Wo = 0.222kJ/kg

check the attached file for complete solution

3 0
3 years ago
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
4 years ago
A furniture manufacturer purchases a drill press machine enabled with 5G and edge computing capabilities to keep the machine ope
Andreas93 [3]

A lot of manufacturer often uses 5G machines. How these capabilities could help improve safety of the operators is that it does includes an emergency switch for the operator so that one can manually shut off when needed.

<h3>Edge computing with 5G</h3>

  • The edge computing along with 5G network and IoT devices can help put together  different safety features and limitations and on can use them to known the unsafe action and also data can be communicated.

Edge computing when use with 5G produces good opportunities in all industry. It is known to help bring computation and data storage close to where data is been produced and it enable good data control, reduced costs, etc.

Learn more about 5G network from

brainly.com/question/24664177

8 0
2 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
9. Calculate the total resistance and current in a parallel cir-
Taya2010 [7]

Answer:

  d. 2.3 ohms (5.3 amperes)

Explanation:

The calculator's 1/x key makes it convenient to calculate parallel resistance.

  Req = 1/(1/4 +1/8 +1/16) = 1/(7/16) = 16/7 ≈ 2.3 ohms

This corresponds to answer choice D.

__

<em>Additional comment</em>

This problem statement does not tell the applied voltage. The answer choices suggest that it is 12 V. If so, the current is 12/(16/7) = 21/4 = 5.25 amperes.

5 0
3 years ago
Other questions:
  • What is an Algorithm? *
    5·1 answer
  • What are the basic parts of a radio system
    15·1 answer
  • A digital Filter is defined by the following difference equation:
    11·1 answer
  • True or false <br> 19. Closed systems rely on feedback from outside of the system to operate.
    12·1 answer
  • Why did fprtmiu78t7ty87uhyu
    12·1 answer
  • Random question, does anyone here use Lego, do not answer unless that is a yes
    15·2 answers
  • Waste that is generated by a business is called a _____________.
    14·2 answers
  • Water is pumped from a lake to a storage tank 18 m above at a rate of 70 L/s while consuming 20.4 kW of electric power. Disregar
    13·1 answer
  • What person at the construction worksite keeps workers safe from asbestos exposure?
    14·1 answer
  • Can someone help me LA project pls :((
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!