Effect of Two-Step Homogenization on the Evolution of Al3Zr Dispersoids in Al-0.3Mg-0.4Si-0.2Zr Alloy Al3Zr nano-particles can be introduced in Al-Mg-Si 6xxx alloys to improve their elevated temperature behavior and recrystallization resistance. The effect of two-step homogenization treatments on
the precipitation of Al3Zr dispersoids in Al-0.3Mg-0.4Si-0.2Zr alloy was investigated and compared to
<h3>What is
Homogenization?</h3>
Any of a number of methods, including homogenization and homogenisation, are used to uniformly combine two liquids that are insoluble in one another. To do this, one of the liquids is changed into a state in which very minute particles are evenly dispersed across the other liquid. The process of homogenizing milk, in which the milk fat globules are equally distributed throughout the remaining milk and reduced in size, is a classic example. In order to create an emulsion, two immiscible liquids (i.e., liquids that are not soluble in all amounts one in another) must be homogenized (from "homogeneous"; Greek, homos, same + genos, kind)[2] (Mixture of two or more liquids that are generally immiscible).
To learn more about Homogenization from the given link:
brainly.com/question/18271118
#SPJ4
Answer:
Total pressure 5.875 atm
Explanation:
The equation for above decomposition is

rate constant 
Half life 
Initial pressure 
Pressure after 3572 min = P
According to first order kinematics


solving for P we get
P = 2.35 atm

initial 4.70 0 0
change -2x +2x +x
final 4.70 -2x 2x x
pressure of
after first half life = 2.35 = 4.70 - 2x
x = 1.175
pressure of
after first half life = 2x = 2(1.175) = 2.35 ATM
Total pressure = 2.35 + 2.35 + 1.175
= 5.875 atm
The answer is (3) metallic. Cobalt is a transition metal, so it can't be covalent bonds, which bond non-metals, therefore eliminating choice 1 and 2. Ionic bonds are between metals and non metals, but solid cobalt does not have a non metal, eliminating choice 4 as well. Metallic bonds are bonds between metals, therefore the answer is (3) metallic.
Answer:
0.208mole of CO2
Explanation:
First, let us calculate the number of mole of HC3H3O2 present.
Molarity of HC3H3O2 = 0.833 mol/L
Volume = 25 mL = 25/100 = 0.25L
Mole =?
Mole = Molarity x Volume
Mole = 0.833 x 0.25
Mole of HC3H3O2 = 0.208mole
Now, we can easily find the number of mole of CO2 produce by doing the following:
NaHCO3 + HC2H3O2 → NaC2H3O2 + H2O + CO2
From the equation,
1mole of HC2H3O2 produced 1 mole of CO2.
Therefore, 0.208mole of HC2H3O2 will also produce 0.208mole of CO2