The force of gravity the masses exert on each other. If one of the masses is doubled , the force of gravity between the objects is doubled. Increases , the force of gravity decreases.
Answer:
In space we feel weightlessness because the earth's gravity has less effect on us. The Earth's gravitational attraction at those altitudes is only about 11% less than it is at the Earth's surface. If you had a ladder that could reach as high as the shuttle's orbit, your weight would be 11% less at the top.
Explanation:
Hope this helps:)
Answer:
A
Explanation:
The line(A) goes throughout the entire picture. So therefore choice A would be it's length.
21) Acceleration from D to E: 
22) The acceleration of the bus from D to E is 
Explanation:
21)
The acceleration of an object is equal to the rate of change of velocity of the object. Mathematically:

where
u is the initial velocity
v is the final velocity
t is the time elapsed
In this problem, we want to measure the acceleration of the bus from point D to point E. We have:
- Initial velocity at point D: u = 0
- Final velocity at point E: v = 5 m/s
- Time elapsed from D to E: t = 21 - 16 = 5 s
Therefore, the acceleration between D and E is

22) This question is the same as 21), so the result is the same.
Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479