Answer:
=9.72 m/s
Explanation:
From the Newton's laws of motion;
x=2(v²cos∅sin∅)/g
Using geometry we see that 2 cos∅sin∅ = sin 2∅
Therefore, x= (v²sin 2∅)g, where v is the take off speed x the range and ∅ the launch angle.
Making v the subject of the formula we obtain the following equation.
v=√{xg /(sin 2∅)}
x=7.80
∅=27.0
v=√{7.8×9.8/sin(27×2)}
v=√94.485
v=9.72 m/s
A.... As energy is the ability to do work... And exerting force and transfering heat falls under work
Answer:
see below
Explanation:
First: Leave a couple inches of wire loose at one end and wrap most of the rest of the wire around iron u-shaped bar and make sure not to overlap the wires.
Second:Cut the wire (if needed) so that there is about a couple inches loose at the other end too.
Third: Now remove about an inch of the plastic coating from both ends of the wire and connect the one wire to one end of a battery and the other wire to the other end of the battery.
Answer: y = 2.4×10^-6m or y= 2.4μm
Explanation: The formulae for the distance between the central bright fringe to any other fringe in pattern is given as
y = R×mλ/d
Where y = distance between nth fringe and Central bright spot fringe.
m = position of fringe = 4
λ = wavelength of light= 600nm = 600×10^-9 m
d = distance between slits = 1.50×10^-5m
R = distance between slit and screen = 2m
y = 2 × 4 × 600×10^-9/2
y = 4800×10^-9/2
y = 2400 × 10^-9
y = 2.4×10^-6m or y= 2.4μm