1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
3 years ago
13

Give two mathematical examples of Newton's third law and how you get the solution​

Physics
1 answer:
bagirrra123 [75]3 years ago
7 0

Answer:

1) Any particle moving in a horizontal plane slowed by friction, deceleration = 32 μ

2) The particle moving by acceleration = P/m - 32μ OR The external force = ma + 32μm

Explanation:

* Lets revise Newton’s Third Law:

- For every action there is a reaction, equal in magnitude and opposite

 in direction.

- Examples:

# 1) A particle moving freely against friction in a horizontal plane

- When no external forces acts on the particle, then its equation of

  motion is;

∵ ∑ forces in direction of motion = mass × acceleration

∵ No external force

∵ The friction force (F) = μR, where μ is coefficient of the frictional force

   and R is the normal reaction of the weight of the particle on the

   surface

∵ The frictional force is in opposite direction of the motion

∴ ∑ forces in the direction of motion = 0 - F

∴ 0 - F = mass × acceleration

- Substitute F by μR

∴ - μR = mass × acceleration

∵ R = mg where m is the mass of the particle and g is the acceleration

  of gravity

∴ - μ(mg) = ma ⇒ a is the acceleration of motion

- By divide both sides by m

∴ - μ(g) = a

∵ The acceleration of gravity ≅ 32 feet/sec²

∴ a = - 32 μ

* Any particle moving in a horizontal plane slowed by friction,

 deceleration = 32 μ

# 2) A particle moving under the action of an external force P in a

  horizontal plane.

- When an external force P acts on the particle, then its equation

 of motion is;

∵ ∑ forces in direction of motion = mass × acceleration

∵ The external force = P

∵ The friction force (F) = μR, where μ is coefficient of the frictional force

   and R is the normal reaction of the weight of the particle on the

   surface

∵ The frictional force is in opposite direction of the motion

∴ ∑ forces in the direction of motion = P - F

∴ P - F = mass × acceleration

- Substitute F by μR

∴ P - μR = mass × acceleration

∵ R = mg where m is the mass of the particle and g is the acceleration

  of gravity

∴ P - μ(mg) = ma ⇒ a is the acceleration of motion

∵ The acceleration of gravity ≅ 32 feet/sec²

∴ P - 32μm = ma ⇒ (1)

- divide both side by m

∴ a = (P - 32μm)/m ⇒ divide the 2 terms in the bracket by m

∴ a = P/m - 32μ

* The particle moving by acceleration = P/m - 32μ

- If you want to fin the external force P use equation (1)

∵ P - 32μm = ma ⇒ add 32μm to both sides

∴ P = ma + 32μm

* The external force = ma + 32μm

You might be interested in
The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 2.0 rev/s in 10.0 s. At th
Arte-miy333 [17]

Answer:

22 revolutions

Explanation:

2 rev/s = 2*(2π rad/rev) = 12.57 rad/s

The angular acceleration when it starting

\alpha_a = \frac{\Delta \omega}{\Delta t} = \frac{12.57}{10} = 1.257 rad/s^2

The angular acceleration when it stopping:

\alpha_o = \frac{\Delta \omega}{\Delta t} = \frac{-12.57}{12} = -1.05 rad/s^2

The angular distance it covers when starting from rest:

\omega^2 - 0^2 = 2\alpha_a\theta_a

\theta_a = \frac{\omega^2}{2\alpha_a} = \frac{12.57^2}{2*1.257} = 62.8 rad

The angular distance it covers when coming to complete stop:

0 - \omega^2 = 2\alpha_o\theta_o

\theta_o = \frac{-\omega^2}{2\alpha_o} = \frac{-12.57^2}{2*(-1.05)} = 75.4 rad

So the total angular distance it covers within 22 s is 62.8 + 75.4 = 138.23 rad or 138.23 / (2π) = 22 revolutions

6 0
3 years ago
A long electric cable is suspended above the earth and carries a current of 345 A parallel to the surface of the earth. The eart
jok3333 [9.3K]

Answer:

0.906 N

Explanation:

Formula for magnetic force acting on current carrying cable:

F = IBLsin(\theta)

Where I = 345A is the current in the wire, B = 5.6*10^{-5} T is the magnetic magnitude generated by Earth. L = 46.9 m is the cable length. \theta = 88.2^o is the angle between vector B and cable direction.

F = 345*5.6*10^{-5}*46.9*sin(88.2^o)

F = 0.906 N

7 0
3 years ago
What is the idea behind the law of multiple proportions?
Akimi4 [234]

Answer:

The law of multiple proportions states that when two elements can combine in different ratios to form different compounds, the masses of the element combining with the fixed mass of another element result in whole number ratios. This shows that the law of multiple proportions is followed

Explanation:

5 0
3 years ago
Explanation's of E=MC²
natita [175]

Answer:

E means energy

M= Mass

C=speed of light squared (the exponent means squared)

4 0
3 years ago
Read 2 more answers
What is the velocity of an object that has been in free fall for 1.5s?
Crank

Answer:

D. 15 m/s downward

Explanation:

v = at + v₀

v = (-9.8 m/s²) (1.5 s) + (0 m/s)

v = -14.7 m/s

Rounded to two significant figures, the answer is D, 15 m/s downward.

8 0
3 years ago
Other questions:
  • In a crash test, a 1000 kg automobile moving at 10 m/s crashes into a brick wall. How much energy goes into demolishing and warm
    10·1 answer
  • How much time does it take for the water to go from the top to bottom 4.5 m/s 53m?
    13·1 answer
  • What kind of electromagnetic waves do computers and microwave ovens produce?
    13·1 answer
  • Given two vectors A⃗ =−2.00i^+ 4.00 j^+ 4.00 k^ and B⃗ = 1.00 i^+ 2.00 j^−3.00k^, do the following.
    5·1 answer
  • PLEASE HELP ME THANK YOU
    12·1 answer
  • If a dart gun with a 20N/m spring inside of it is compressed a distance of 0.3m, How high into the air can it shoot a 0.15kg dar
    6·1 answer
  • A diver 50 m deep in 10∘C fresh water exhales a 1.0-cm-diameter bubble. What is the bubble's diameter just as it reaches the sur
    7·1 answer
  • The density of ice is 0.92 g/cm 3 . An ice sculptor orders a one cubic meter block of ice. What is the mass of the block? Hint:
    5·1 answer
  • A mixture of sand, salt, iron and saw dust is given to you. You are asked to prove it is a mixture. Explain how you could possib
    10·1 answer
  • A cup of water is warmed from 21 °C to 85 °C. What is the difference between these two temperatures, in kelvins?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!