Answer:
The angle of recoil electron with respect to incident beam of photon is 22.90°.
Explanation:
Compton Scattering is the process of scattering of X-rays by a charge particle like electron.
The angle of the recoiling electron with respect to the incident beam is determine by the relation :
....(1)
Here ∅ is angle of recoil electron, θ is the scattered angle, h is Planck's constant,
is mass of electron, c is speed of light and f is the frequency of the x-ray photon.
We know that, f = c/λ ......(2)
Here λ is wavelength of x-ray photon.
Rearrange equation (1) with the help of equation (1) in terms of λ .

Substitute 6.6 x 10⁻³⁴ m² kg s⁻¹ for h, 9.1 x 10⁻³¹ kg for
, 3 x 10⁸ m/s for c, 0.500 x 10⁻⁹ m for λ and 134° for θ in the above equation.


= 22.90°
<span>analyze. Analyze means to study or examine
something carefully in a methodical way. ... This verb analyze comes
from the noun analysis. The noun analysis was in turn borrowed from
Greek, from analyein, or "to dissolve."
hope it helps;)
</span>
Molecular formula of water molecule is H₂O.
Explanation:
The water cycle basically involves five steps:
- evaporation and transpiration ⇄
- condensation, ⇄
- precipitation, ⇄
- runoff, ⇄
- infiltration ⇄
So when a <u>thunderstorm </u>occurs it <em>helps in completing the precipitation process </em>by enabling the release of water vapor stored up in the atmosphere to fall on the ground as rain.
After this, the water <em>runoffs </em><em>to the surface of the ground, on plants, into rocks, rivers, and lakes.</em>
Next, the <em>Infiltration process</em> enables the water on the ground surface to enter the soil some of which becomes groundwater.
The cycle begins again as the<em> </em><em>evaporation and transpiration</em> <em>process </em>begins, where the groundwater as a result of heat from the sun is taken back into the atmosphere, while water in plants by means of transpiration goes back <em>into the atmosphere</em>.
It then <em>condenses </em>and falls back as precipitation again.
Answer:
The \: parts \: of \: the \: model \\ airplane \: are \: in \: the \\ same \: proportions \: as \: the \\ actual \: airplane.