The spectrum of a distant star shows that one in 2 e6 of the atoms of a particular element is in its first excited state 7.5 eV
above the ground state. What is the temperature of the star? (You can ignore the other excited states and assume the ratio of statistical weights is 4
1 answer:
Answer:
The temperature of star is 5473.87 K
Explanation:
Given:
Energy difference
eV
The ratio of number of particle ![\frac{N_{f} }{N_{i} } = \frac{1}{2 \times 10^{6} }](https://tex.z-dn.net/?f=%5Cfrac%7BN_%7Bf%7D%20%7D%7BN_%7Bi%7D%20%7D%20%3D%20%5Cfrac%7B1%7D%7B2%20%5Ctimes%2010%5E%7B6%7D%20%7D)
Degeneracy ratio ![\frac{g_{f} }{g_{i} } = 4](https://tex.z-dn.net/?f=%5Cfrac%7Bg_%7Bf%7D%20%7D%7Bg_%7Bi%7D%20%7D%20%20%3D%204)
From the formula of boltzmann distribution for population levels,
![\frac{N_{f} }{N_{i} } =\frac{g_{f} }{g_{i} } e^{-\frac{\Delta E}{kT} }](https://tex.z-dn.net/?f=%5Cfrac%7BN_%7Bf%7D%20%7D%7BN_%7Bi%7D%20%7D%20%3D%5Cfrac%7Bg_%7Bf%7D%20%7D%7Bg_%7Bi%7D%20%7D%20%20e%5E%7B-%5Cfrac%7B%5CDelta%20E%7D%7BkT%7D%20%7D)
Where
boltzmann constant = ![8.62 \times 10^{-5} \frac{eV}{K}](https://tex.z-dn.net/?f=8.62%20%5Ctimes%2010%5E%7B-5%7D%20%5Cfrac%7BeV%7D%7BK%7D)
![\frac{1}{2 \times 10^{6} } =4 e^{-\frac{7.5 eV}{8.62 \times 10^{-5} T} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%20%5Ctimes%2010%5E%7B6%7D%20%7D%20%3D4%20%20e%5E%7B-%5Cfrac%7B7.5%20eV%7D%7B8.62%20%5Ctimes%2010%5E%7B-5%7D%20T%7D%20%7D)
![8 \times 10^{6} } = e^{\frac{7.5 eV}{8.62 \times 10^{-5} T} }](https://tex.z-dn.net/?f=8%20%5Ctimes%2010%5E%7B6%7D%20%7D%20%3D%20e%5E%7B%5Cfrac%7B7.5%20eV%7D%7B8.62%20%5Ctimes%2010%5E%7B-5%7D%20T%7D%20%7D)
![\ln(8 \times 10^{6}) = {\frac{7.5 eV}{8.62 \times 10^{-5} T} }](https://tex.z-dn.net/?f=%5Cln%288%20%5Ctimes%2010%5E%7B6%7D%29%20%20%3D%20%7B%5Cfrac%7B7.5%20eV%7D%7B8.62%20%5Ctimes%2010%5E%7B-5%7D%20T%7D%20%7D)
![T = {\frac{7.5 eV}{8.62 \times 10^{-5} \ln(8 \times 10^{6})} }](https://tex.z-dn.net/?f=T%20%20%3D%20%7B%5Cfrac%7B7.5%20eV%7D%7B8.62%20%5Ctimes%2010%5E%7B-5%7D%20%5Cln%288%20%5Ctimes%2010%5E%7B6%7D%29%7D%20%7D)
K
Therefore, the temperature of star is 5473.87 K
You might be interested in
It's being planned to launch in the 2020's
Answer:
It is newton's first law
Acted upon by an unbalanced force
Because due to rubbing it is statically charges
To the right of calcium in the same period.
Hope this helps!