Answer:
Explanation:
The question is incomplete.
The equation of motion is given for a particle, where s is in meters and t is in seconds. Find the acceleration after 4.5 seconds.
s= sin2(pi)t
Acceleration = d²S/dt²
dS/dt = 2πcos2πt
d²S/dt² = -4π²sin2πt
A(t) = -4π²sin2πt
Next is to find acceleration after 4.5 seconds
A(4.5) = -4π²sin2π(4.5)
A(4.5) = -4π²sin9π
A(4.5) = -4π²sin1620
A(4.5) = -4π²(0)
A(4.5) = 0m/s²
Answer:
714.285s
Explanation:
use relative velocity
8-4.5 = 3.5m/s
x = 2500m
2500/3.5 = 714.285s = 700s (with sig figs)
The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1