Answer:
Part a)

Part b)

Explanation:
Part a)
as the mass of the suspension system is given as

also we have

so now for force balance we have



Part b)
Now we know that amplitude decreases by 63% in each cycle
so after one cycle the amplitude will become 37% of initial amplitude
so it is given as

also we know




here t = time period of one oscillation
so it is



now damping constant is


Answer:
The ratio is 
Explanation:
From the question we are told that
The first minimum of the single slit pattern falls on the fifth maximum of the double slit pattern.
Generally the condition for constructive interference for as single slit is

Here k is the width of the slit and n is the order of the fringe and for single slit n = 1 (cause we are considering the first maxima)
Generally the condition for constructive interference for as double slit is

Here d is the separation between the slit and m is the order of the fringe and for double slit m = 5 (cause we are considering the first maxima)
=> 
So

=> 
So

Answer:
(1) Hooke's law
(2) a) Extension is directly proportional to the applied load
b) The starting point of the graph is the origin (0, 0) or absence of load, no extension
Explanation:
(1) The law obeyed by the spring is known as Hooke's law which states that the extension or compression, x, of a spring proportional to the applied force, F
F = -k × x
Where;
k = The spring constant
(2) Given that the law mathematically is F = -k × x
The two features of the graph that show that the law is obeyed are;
a) The extension increases as the load is increased
b) The extension is zero when the there is no applied load.
Answer: D (doubled)
According to ohm's law
I = V/R ,
V = IR ; R = constant and V is doubled
From the equation
V is directly proportional to the current, and it is given that R is constant ;
2V = 2I. R since R = constant
Hence I is doubled.
Answer:
a) λ = 121.5 nm
, b) 102.6, 97, 91.1 nm
Explanation:
Bohr's model describes the energy of the hydrogen atom
= k² e² / 2m (1 / n²)
A transition occurs when the electron passes from n level to a lower one
-
= k² e² / 2m (1 /
² - 1 /
²)
Planck's relationship is
E = h f = h c / lam
hc /λ = k² e²/ 2m(1 /
² - 1 /
²)
1 / λ = [k² e² / 2m h c] (1 /
² - 1 /
²)
1 /λ = Ry] (1 /
² - 1 /
²)
a) the first element of the series occurs for
= 2
1 / λ = 1.097 10⁷ (1- 1/2²)
1 / λ = 1.097 10⁷ (1- 0.25)
1 / λ = 0.82275 10⁷
λ = 1.215 10⁻⁷ m
λ = 1,215 10⁻⁷ m (10⁹nm / m)
λ = 121.5 nm
b) the next elements of the series occur to
1 /λ λ (10-7m) λ (nm)
3 1 1,097 10⁷ (1-1 / 9) 1,0255 102.6
4 1 1,097 10⁷ (1-1 / 16) 0.9723 97.2
∞ 1 1,097 10⁷ (1 - 0) 0.91158 91.1