To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
Answer:
La velocidad de la luz en el vacío es una constante universal con el valor de 299 792 458 m/s (186 282,397 mi/s),aunque suele aproximarse a 3·108 m/s. Se simboliza con la letra c, proveniente del latín celéritās (en español, celeridad o rapidez).
¿Cuál es la consecuencia que a velocidad de la luz sea constante?
Respuesta. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.
Answer:
150J
Explanation:
Formula : <u>Work</u><u> </u><u>done</u>
Force x distance
work done = force x distance
Distance should be measured in meters
300÷100=3m
work done = 450 x 3
=150J
Answer:
The SI units of the “A” is m (meters)
The SI units of the “B” is m/s^2
Explanation:
Given the distance = d meters.
Time taken to travel = t (seconds)
Function of the distance, d = A + Bt^2
Now we have given the above information and from the given distance function, we have to find the SI units of the A and B. Here, below are the SI units.
Thus, the SI units of the “A” is = m (meters)
The SI units of the “B” is = m/s^2
Answer:
PART A
In a solid
The attractive forces keep the particles together tightly enough so that the particles do not move past each other. ... In the solid the particles vibrate in place. Liquid – In a liquid, particles will flow or glide over one another, but stay toward the bottom of the container.
In a liquid
Particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
A gas
The particles move rapidly in all directions, frequently colliding with each other and the side of the container. With an increase in temperature, the particles gain kinetic energy and move faster.
PART B
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert small force on the wall The pressure exerted by the gas is due to the sum of all these collision forces. The more particles that hit the walls, the higher the pressure.
Explanation:
GOOD LUCK!!! :)