Answer:
572 g
Explanation:
Molar mass is the mass of 1 mol of an element or compound
molar mass of Li₂SO₄ is the sum of the products of the molar masses of the elements by the number of atoms in the compound
molar masses of each element making up lithium sulphate
Li - 7 g/mol
S - 32 g/mol
O - 16 g/mol
molar mass of Li₂SO₄ - (7 g/mol x 2) + ( 32 g/mol x 1) + ( 16 g/mol x 4 )
molar mass = 110 g/mol
mass of 1 mol of Li₂SO₄ is 110 g
therefore mass of 5.2 mol of Li₂SO₄ is - 110 g/mol x 5.2 mol = 572 g
mass is 572 g
Answer:
53.7 grams of HNO3 will be produced
Explanation:
Step 1: Data given
Mass of NO2 = 59.0 grams
Molar mass NO2 = 46.0 g/mol
Step 2: The balanced equation
3NO2 + H2O→ 2HNO3 + NO
Step 3: Calculate moles NO2
Moles NO2 = 59.0 grams / 46.0 g/mol
Moles NO2 = 1.28 moles
Step 4: Calculate moles HNO3
For 3 moles NO2 we need 1 mol H2O to produce 2 moles HNO3 and 1 mol NO
For 1.28 moles NO2 we'll have 2/3 * 1.28 =0.853 moles HNO3
Step 7: Calculate mass HNO3
Mass HNO3 = 0.853 moles * 63.01 g/mol
Mass HNO3 = 53.7 grams
53.7 grams of HNO3 will be produced
Above question is incomplete. Complete question is attached below
........................................................................................................................
Solution:
Reduction potential of metal ions are provided below. Higher the value to reduction potential, greater is the tendency of metal to remain in reduced state.
In present case,
reduction potential of Au is maximum, hence it is least prone to undergo oxidation. Hence, it is
least reactive.
On other hand,
reduction potential of Na is minimum, hence it is most prone to undergo oxidation. Hence, it is
most reactive.