Electric field strength = resistivity of copper x current density
where
p= 1.72 x 10^-8 <span>ohm meter
diameter = 2.05mm=.00205 m
current = 2.75 A
</span>get first the current density:
current density = current/ cross section area
find the cross section area
cross section area = pi.(d/2)^2;
cross section = 3.3 006x10-6 m^2
substitute the values
current density = 2.75A/3.3006x 10-6m^2
current density=35.55 x1 0^2 A/m^2
Electric field stregnth =1.72 x 10^-8 ohm meter x 35.55 x10^2 A/m^2
Electric field stregnth= 46.415 Volts/m
The electric field strength of copper is 46.415 V/m.
The specific heat of mercury is 149.4 J/(kgK)
Explanation:
When a substance is supplied with an amount of energy Q, its temperature increases according to the equation:

where
is the increase in temperature
m is the mass of the sample
is its specific heat capacity
For the sample of mercury in this problem we have
Q = 275 J
m = 0.450 kg

Therefore, by re-arranging the equation we find the mercury's specific heat:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
The first law of thermodynamics states the conservation of energy and heat where the total energy in an isolated system may be transformed into another, but never created or destroyed. If 286 J of energy was released to the room, then also 286 J of energy was also removed from food in that refrigerator assuming it is an isolated system. :)
Read more on Brainly -
brainly.com/sf/question/3844753I tried to help