Answer:
See the answers below.
Explanation:
The total power of the circuit is equal to the sum of the powers of each lamp.
![P=60+100\\P=160 [W]](https://tex.z-dn.net/?f=P%3D60%2B100%5C%5CP%3D160%20%5BW%5D)
Now we have a voltage source equal to 240 [V], so by means of the following equation we can find the current circulating in the circuit.

where:
P = power [W]
V = voltage [V]
I = current [amp]
![I = P/V\\I=160/240\\I=0.67 [amp]](https://tex.z-dn.net/?f=I%20%3D%20P%2FV%5C%5CI%3D160%2F240%5C%5CI%3D0.67%20%5Bamp%5D)
So this is the answer for c) I = 0.67 [amp]
We know that the voltage of each lamp is 240 [V]. Therefore using ohm's law which is equal to the product of resistance by current we can find the voltage of each lamp.
a)

where:
V = voltage [V]
I = current [amp]
R = resistance [ohms]
Therefore we replace this equation in the first to have the current as a function of the resistance and not the voltage.

![60 = (0.67)^{2}*R\\R_{60}=133.66[ohm] \\and\\100=(0.67)^{2} *R\\R_{100}=100/(0.66^{2} )\\R_{100}=225 [ohm]](https://tex.z-dn.net/?f=60%20%3D%20%280.67%29%5E%7B2%7D%2AR%5C%5CR_%7B60%7D%3D133.66%5Bohm%5D%20%5C%5Cand%5C%5C100%3D%280.67%29%5E%7B2%7D%20%2AR%5C%5CR_%7B100%7D%3D100%2F%280.66%5E%7B2%7D%20%29%5C%5CR_%7B100%7D%3D225%20%5Bohm%5D)
b)
The effective resistance of a series circuit is equal to the sum of the resistors connected in series.
![R = 133.66 + 225\\R = 358.67 [ohms]](https://tex.z-dn.net/?f=R%20%3D%20133.66%20%2B%20225%5C%5CR%20%3D%20358.67%20%5Bohms%5D)
Complete Question:
One simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.5 m/s in 2.24 s, what will be his total time?
Answer:
total time = 6.24 s
Explanation:
Using the equation of motion:
v = u + at
initial speed, u = 0 m/s
v = 11.5 m/s
t = 2.24 s
11.5 = 0 + 2.24a
a = 11.5/2.24
a = 5.13 m/s²
For the total time spent by the sprinter:
s = ut + 0.5at²
100 = 0.5 * 5.13 * t²
t² = 100/2.567
t² = 38.957
t = √38.957
t = 6.24 s
Answer:
2.12 J
Explanation:
Initial kinetic energy = final elastic energy + work by friction
KE = EE + W
KE = ½ kx² + W
5 J = ½ (1600 N/m) (0.06 m)² + W
W = 2.12 J
Answer:
4.022 seconds and 4.99 seconds
Explanation:
Hello!
The free fall of the stone corresponds to a uniformly varied rectilinear movement
d=V_0*t+1/2*g*t^2
Being a free fall the initial speed is zero.
The distance is positive when considered in the same direction and direction as acceleration and speed.
256 feet stone
79.25 m=0 m⁄s*t+1/2*9,8 m⁄s^2 *t^2
t = 4.022 seconds
400 feet stone
121.92m=0 m⁄s*t+1/2*9,8 m⁄s^2 *t^2
t= 4,99 seconds
success with your homework!
A car driving at a constant speed around a circular track