It's difficult to write it down, but I'll attach you a good example of hydroboration of indene. I hope you'll find it helpful.
Yes, but they are tubular organs and like all other organs are made up of tissues
The answer is the moment magnitude scale
"The reaction will absorb energy" is the best conclusion according to the energy diagram of the chemical reaction.
<u>Option: B</u>
<u>Explanation:</u>
The chemical bonds in the reactions are broken and formed as per process and contributed by three major steps: reactants, transition phase and product formation. Here transition phase is in equilibrium stage drived by activation energy, where bond is partially formed and partially broken, located at higher energy level then the starters.
The reactant's energy level is less relative to the products as seen in the endothermic reactions' energy diagram, which depicts that the products are less balanced than reactants. Here when the reaction is forced to the forward direction, then it direct towards the more unbalance entities. As energy is absorbed in the endothermic reaction from surrounding, thus the enthalpy change (ΔH) for the reaction is positive.
<u>Answer:</u> The equilibrium concentration of HCl is 
<u>Explanation:</u>
We are given:
Moles of
= 0.564 moles
Volume of vessel = 1.00 L
Molarity is calculated by using the equation:

Molarity of 
The given chemical equation follows:

<u>Initial:</u> 0.564
<u>At eqllm:</u> 0.564-x x x
The expression of
for above equation follows:
![K_c=[NH_3][HCl]](https://tex.z-dn.net/?f=K_c%3D%5BNH_3%5D%5BHCl%5D)
The concentration of pure solid and pure liquid is taken as 1.
We are given:

Putting values in above equation, we get:

Negative sign is neglected because concentration cannot be negative.
So, ![[HCl]=2.26\times 10^{-3}M](https://tex.z-dn.net/?f=%5BHCl%5D%3D2.26%5Ctimes%2010%5E%7B-3%7DM)
Hence, the equilibrium concentration of HCl is 