Answer:
Keep it simple. If all the oxygen contained in the 200 grams of potassium chlorate is produced in the decomposition, then all we have to do is find out how many grams of oxygen are there in the 200 grams. This we can do by calculating the ratio of oxygen mass to the whole. Using 39.1 for potassium, 35.45 for chlorine and 3 times 16, or 48 for the oxygen, we get a total of 122.55 grams per mole for potassium chlorate, of which 48 grams are oxygen. This ratio is 48/122.55. This ratio times the original 200 grams of the compound, gives us 78.34 grams of oxygen produced.
Explanation:
Answer:
Type= Thermal Energy , Motion = Random motion of microscopic particles of matter , Example = Heat, Fire
Type= Electrical energy, Motion = Bluk flow of chorges , Example = Household current , AC and DC circuits.
Explanation:
keep it up!!!!
Answer:
The empirical formula is SF6 (option E)
Explanation:
Step 1: Data given
Mass of sulfur = 3.21 grams
Mass of fluorine = 11.4 grams
Molar mass sulfur = 32.065 g/mol
Molar mass fluorine = 19.00 g/mol
Step 2: Calculate moles
Moles = mass /molar mass
Moles sulfur = 3.21 grams / 32.065 g/mol
Moles sulfur = 0.100 moles
Moles fluorine = 11.4 grams / 19.00 g/mol
Moles fluorine = 0.600 moles
Step 3: Calculate mol ratio
We divide by the smallest amount of moles
S: 0.100 / 0.100 = 1
F : 0.600 / 0.100 = 6
The empirical formula is SF6 (option E)
The correct answer is higher melting point, bound by metal metal bonds.
While alkali metals only have one valence electron, alkaline earth metals have two. Metal to metal connections hold the metals together. Alkaline earth metals have a stronger metallic connection and a higher melting point because they have two valence electrons.
the characteristics that Group 2 metals excel in over Group 1 metals.
- Initial Ionization Potential
- Group 2 items are more difficult than group 1 elements.
- Strong propensity to produce bivalent compounds
As a result, group 2 metals have stronger metallic bonding, which leads to increased cohesive energy and compact atom packing. This explains why group 2 metals are harder and have higher melting and boiling temperatures than group 1 metals.
To learn more about Group 2A(2) refer the link:
brainly.com/question/9431096
#SPJ4
Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L