I don’t know this, so I did research, so here! This is from a website called “Quora”, btw!
If you need more information, just go to this app by copying and pasting your question on the G o o g l e Search bar!
When utilizing the gravimetric method, it is crucial to completely dissolve your sample in 10 mL of water. A quantitative technique called gravimetric analysis employs the selective precipitation of the component under study from an aqueous solution.
A group of techniques known as gravimetric analysis are employed in analytical chemistry to quantify an analyte based on its mass. Gravimetric analysis is a quantitative chemical analysis technique that transforms the desired ingredient into a substance (of known composition) that can be extracted from the sample and weighed. This is a crucial point to remember.
Gravimetric water content (g) is therefore defined as the mass of water per mass of dry soil. To calculate it, weigh a sample of wet soil, dry it to remove the water, and then weigh the dried soil (mdry). Dimensions of the sample Water is commonly forgotten despite having a density close to one.
To know more about gravimetry, please refer:
brainly.com/question/18992495
#SPJ4
Since they can still be unstable...nuetral atoms have the same amount of protons to electrons but to be stable they need to fill up there outer shell by gaining or losing electrons
Answer:
1. No
2.a. Nothing will happen to figure 1 as both the sides have 30 N.
2.b. The force with 30 N will push 10 N because 10 N is less force than 30 N.
Answer: is the same for all substances.
Explanation:
The number of molecules in one mole of a substance is the same for all substances because
A mole (which is the quantity of a substance that has the same number (Avogadro's number, is 6.022 * 10^23) of particles as are found in 12.000 grams of carbon-12 of the substance) for any substance has the same number of atoms, molecules, or ions contained in any other substance.
1 mole = 6.022 x 10^23 atoms, molecules, or ions