Answer: option (D)
Explanation:
The potential energy of each of the students is given below as
P.E(student A) = mgh, where m = mass of student A, g is acceleration due to gravity and h = height of the high dive structure.
The mass of student B is twice as much as that of A, hence his mass is 2m and his potential energy is given below as
P.E ( student B) =2mgh = 2(mgh)
Recall that the relationship between potential energy and work done is that
Work done = - (change in potential)
For student A, work done = - mgh
For student B, work done = - 2mgh
From the equations above it can be seen that student B will do twice the work in getting to the high dive structure than student A hence validating option D.
Answer:
In general, a scientific law is the description of an observed phenomenon. It doesn't explain why the phenomenon exists or what causes it. The explanation of a phenomenon is called a scientific theory. It is a misconception that theories turn into laws with enough research.
Explanation:
Hope this helped
Answer:
1. E=5320.3J
2. E= 1773.45J
3. E=6.76*10^{-21}J
4. E=2.25*10^{-21}J
Explanation:
1. the thermal energy is given by the formula

where KB is the Boltzmann's constant, T is the temperature and N is the number of molecules in the system.
2. Each degree of freedom contains one half of the total energy. Hence, the energy for one degree of freedom is

3.

4.

Hope this helps!!
A) -3.75 meters/second
A=(20^2-80^2)/(2x800)
=(400-6400)/1600
=-6000/1600
=-3.75
B) 16 seconds
t=(20-80)/-3.75
=-60/-3.75
=16
Answer:
0.37 kg
Explanation:
I'm not a professor myself, but this is how I worked it out:
using the graph, after 100 seconds, the temperature is 100 degrees Celsius.
If we now substitute everything into the specific heat capacity equation, making the mass "m", we would come up with:
4200 = 155000/(m x 100)
If we rearrange and solve for m, we get 0.37 kg.
I'm not sure if I have done this correctly, feel free to correct me.
Hope this helps!