Answer:
It would take the object 5.4 s to reach the ground.
Explanation:
Hi there!
The equation of the height of a free-falling object at any given time, neglecting air resistance, is the following:
h = h0 + v0 · t + 1/2 · g · t²
Where:
h = height of the object at time t.
h0 = initial height.
v0 = initial velocity.
g = acceleration due to gravity (-32.2 ft/s² considering the upward direction as positive).
t = time
Let´s supose that the object is dropped and not thrown so that v0 = 0. Then:
h = h0 + 1/2 · g · t²
We have to find the time at which h = 0:
0 = 470 ft - 1/2 · 32.2 ft/s² · t²
Solving for t:
-470 ft = -16.1 ft/s² · t²
-470 ft / -16.1 ft/s² = t²
t = 5.4 s
The unit is light years or Ly
What substances? Depends on their density, the lower density floats on top. For example, oil floats on top of water
Explanation:
As we know, resistance is the ratio of voltage used and current flowing through the circuit. So,
<h3>R = V/I</h3>
By error calculation
<h3>∆R/R = [(∆V/V)100] + [(∆I/I)100]</h3>
V = 100 ± 6% V
I = 10 ± 0.2% A
∆R/R= (5/100)×100 + (0.2/10)×100
∆R/R=5+2=7%
<h2>So, percentage error in resistance (R) = ± 7%.</h2>