Answer: 259.2 KJ
Explanation:
The formula calculate work don in a circuit is given by :-
, where Q is charge and V is the potential difference.
The formula to calculate charge in circuit :-
, where I is current and t is time.
Given : Current : 
Potential difference : 
Time : 
Now, 
Then, 
Hence, the work done = 259.2 KJ
Answer: The coefficient of static friction is 3.85 and The coefficient of kinetic friction is 2.8
Explanation:
in the attachment
The main formula is given by Eb/nucleon = Eb/ mass of nucleid
as for <span>52He, the mass is 5
so by applying Einstein's formula Eb=DmC², Eb=</span><span>binding energy
</span><span>52He-----------> 2 x 11p + 3 x10n is the equation bilan
</span>so Dm=2 mp + (5-2)mn-mnucleus, mp=mass of proton=1.67 10^-27 kg
mn=mass of neutron=<span>1.67 10^-27 kg
</span><span>m nucleus= 5
Dm= 2x</span>1.67 10^-27 kg+ 3x<span>1.67 10^-27 kg-5= - 4.9 J
Eb= </span> - <span>4.9 J x c²= -4.9 x 9 .10^16= - 45 10^16 J
so the answer is Eb /nucleon = Eb/5= -9.10^16 J, but 1eV=1.6 . 10^-19 J
so </span><span>-9.10^16 J/ 1.6 10^-19= -5.625 10^35 eV
the final answer is </span><span>Eb /nucleon </span><span>= -5.625 x10^35 eV</span>
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec