The colder the more likely it is to become a liquid
In fact, entropy of an isolated system never decreases (2nd law of thermodynamics), unless some external energy is provided in order to "restore" order in the system and decrease its entropy.
(note that when external energy is added to the system, it is no longer "isolated").
*This is only true if the question is referring to a certain system within the universe. If we are considering the universe itself as the system, then this option is no longer correct, because no external energy can be provided to the universe, and since the universe is an isolated system, its entropy can never decrease. If we are considering the universe itself as the system, none of the options is true.
<u><em>The question doesn't provide enough data to be solved, but I'm assuming some magnitudes to help you to solve your own problem</em></u>
Answer:
<em>The maximum height is 0.10 meters</em>
Explanation:
<u>Energy Transformation</u>
It's referred to as the change of one energy from one form to another or others. If we compress a spring and then release it with an object being launched on top of it, all the spring (elastic) potential energy is transformed into kinetic and gravitational energies. When the object stops in the air, all the initial energy is now gravitational potential energy.
If a spring of constant K is compressed a distance x, its potential energy is

When the launched object (mass m) reaches its max height h, all that energy is now gravitational, which is computed as

We have then,


Solving for h

We have little data to work on the problem, so we'll assume some values to answer the question and help to solve the problem at hand
Let's say: x=0.2 m (given), K=100 N/m, m=2 kg
Computing the maximum height


The maximum height is 0.10 meters
A circuit which only has one path for current to follow
Answer:
When deformed, it returns to its original shape
Explanation:
- A spring is elastic.
- Elasticity is the property of a material to regain its shape after having been deformed.
- It means that when the force is doubled, the amount of deformation in it gets doubled.
- Hence, the correct option is (b) " When deformed, it returns to its original shape".