Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
Answer:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Explanation:
Step 1: The balanced equation
2HCl(aq)+Ca(OH)2(aq) → 2H2O(l)+CaCl2(aq)
This equation is balanced, we do not have the change any coefficients.
Step 2: The netionic equation
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will.
2H+(aq) + 2Cl-(aq) + Ca^2+(aq) + 2OH-(aq) → 2H2O(l) + Ca^2+(aq) + 2Cl-(aq)
After canceling those spectator ions in both side, look like this:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Answer
False
Explanation
Specific heat is the amount of heat per unit mass required to rise the temperature of a substance by one degree celsius.It is expressed in units of thermal energy per degree temperature.A calorimeter is used when measuring the heat capacity of a reaction.Molar heat capacity is amount of heat required to raise the temperature of a substance by one degree Celsius.
Answer:.633
Explanation:
I have know idea but it was right
Answer:
the activation energy Ea = 179.176 kJ/mol
it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
Explanation:
From the given information
Thus;
Because at 113.0°C; the rate is 7 time higher than at 100°C
Hence:
1.9459 =
Ea = 179.176 kJ/mol
Thus; the activation energy Ea = 179.176 kJ/mol
b)
here;
where ;
Now;
t = 7.0245 mins
Therefore; it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.