Answer:
The correct answer is "24 V".
Explanation:
The given values are:
Current,
I = 0.50 A
Resistance,
R = 12 W
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒
the answer is B 4-6 months thats when they can pick up large objects.
Complete question:
Find the pressure exerted by a waterbed with dimensions of 2 m x 2 m which is 30 cm thick. (hint: use 1000 kg/m³ as density of water)
Answer:
The pressure exerted by the waterbed is 2940 N/m²
Explanation:
Given;
Length of waterbed, L = 2 m
Width of waterbed, W = 2 m
Height of waterbed, H = 30 cm = 0.3 m
density of water, ρ = 1000 kg/m³
Hydrostatic pressure derivation:

The hydrostatic pressure exerted by the waterbed is directly proportional to the height of the waterbed. Thus, the hydrostatic pressure increases with increase in height of the waterbed.
Hydrostatic Pressure exerted by the waterbed:
P = ρgH
P = 1000 x 9.8 x 0.3
P = 2940 N/m²
Therefore, the pressure exerted by the waterbed is 2940 N/m²
Answer:
<em>The object with the twice the area of the other object, will have the larger drag coefficient.</em>
<em></em>
Explanation:
The equation for drag force is given as

where
IS the drag force on the object
p = density of the fluid through which the object moves
u = relative velocity of the object through the fluid
p = density of the fluid
= coefficient of drag
A = area of the object
Note that
is a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. The most interesting things is that it is dependent on the linear dimension, which means that it will vary directly with the change in diameter of the fluid
The above equation can also be broken down as
∝
A
where
is the pressure exerted by the fluid on the area A
Also note that
= 
which also clarifies that the drag force is approximately proportional to the abject's area.
<em>In this case, the object with the twice the area of the other object, will have the larger drag coefficient.</em>