Answer:
Option C is correct.
Modulus of elasticity of the composite perpendicular to the fibers = (12 × 10⁶) psi
Explanation:
For combination of materials, the properties (especially physical properties) of the resulting composite is a sum of the fractional contribution of each material thay makes up the composite.
In this composite,
The fibres = 20 vol%
Aluminium = 80 vol%
Modulus of elasticity of the composite
= [0.2 × E(fibres)] + [0.8 × E(Al)]
Modulus of elasticity of the fibers = E(fibres) = (55 × 10⁶) psi. =
Modulus of elasticity of aluminum = E(Al) = (10 × 10⁶) psi.
But modulus of elasticity of the composite perpendicular to the fibers is given in the expression.
[1 ÷ E(perpendicular)]
= [0.2 ÷ E(fibres)] + [0.8 ÷ E(Al)]
[1 ÷ E(perpendicular)]
= [0.2 ÷ (55 × 10⁶)] + [0.8 ÷ (10 × 10⁶)]
= (3.636 × 10⁻⁹) + (8.00 × 10⁻⁸)
= (8.3636 × 10⁻⁸)
E(perpendicular) = 1 ÷ (8.3636 × 10⁻⁸)
= 11,961,722.5 psi = (11.96 × 10⁶) psi
= (12 × 10⁶) psi
Hope this Helps!!!
Answer:
Explanation:
The combined wave only end up been more powerful than the Longitudinal wave. This means, the transverse wave is more powerful than the combined wave. In transverse wave, the oscillation is perpendicular to the direction of the wave, while in longitudinal wave, the motion of the movement of the object is parallel to the movement of the wave. And in combined wave, the movement of the medium is in a circular manner,
The best and most correct answer among the choices provided by your question is the fourth choice or letter D.
<span>Atmosphere in a sealed space craft contains </span><span>pressurized atmospheric air available normally on earth.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!