A, something to remember is that if the numbers are even the answer too will be even. Every time hope this helps :>
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.
Answer:
- 0.09 % of the original radioactive nucllde its left after 10 half-lives
- It will take 241,100 years for 10 half-lives of plutonium-239 to pass.
Explanation:
The equation for radioactive decay its:
,
where N(t) its quantity of material at time t,
its the initial quantity of material and
its the mean lifetime of the radioactive element.
The half-life
its the time at which the quantity of material its the half of the initial value, so, we can find:

so:




So, after 10 half-lives, we got:




So, we got that a 0.09 % of the original radioactive nucllde its left.
Putonioum-239 has a half-life of 24,110 years. So, 10 half-life will take to pass

It will take 241,100 years for 10 half-lives of plutonium-239 to pass.
Answer:
positive ion
Explanation:
due to the fact it loses electrons there is 2 more protons than electrons