Ocean currents can be generated by wind, density differences in watermasses caused by temperature and salinity variations, gravity, and events such as earthquakes
south = -(north)
Displacement = (4 km north) + (2 km south) + (5 km north) + (5 km south)
Displacement = (4 km north) - (2 km north) + (5 km north) - (5 km north)
Displacement = (4 - 2 + 5 - 5) km north
<u>Displacement = 2 km north </u>
Answer:
The energy which is produced by a battery is 101.1 kJ.
Explanation:
The expression for the energy in terms of voltage, current and time is as follows;
E=VIt
Here, V is the voltage, I is the current and t is the time.
It is given in the problem that a battery can provide a current of 1.80 A at 2.60 V for 6.00 hr.
Calculate the energy of the battery.
E=VIt
Convert time from hour int seconds.
t=6 hr
t=(6)(60)(60)
t=21600 s
Put I= 1.80 A, V= 2.60 V and t= 21600 s in the expression of energy.
E=(2.60)(1.80)(21600)
E= 101.1 kJ
Therefore, the energy which is produced by a battery is 101.1 kJ.
<h3><u>Answer;</u></h3>
Kinetic energy
A car engine changes chemical potential energy into the <u>kinetic energy</u> of the moving car.
<h3><u>Explanation;</u></h3>
- A car engine converts potential chemical energy stored in gasoline into thermal energy and then into kinetic mechanical energy.
- When gasoline undergoes combustion it reacts with oxygen to produce carbon dioxide and water vapor.Gasoline is a mixture of octane and similar hydrocarbons and contains potential chemical energy.
- The hot exhaust gases from the combustion of gasoline that are produced within the cylinder expand and exert pressure, moving the piston in the cylinder outward then inward as the gas is exhausted. Kinetic mechanical energy of the moving pistons is transferred to the drive shaft and eventually to the wheels, giving the car kinetic mechanical energy.